比例的意义教学反思

时间:2024-03-02 23:35:38
比例的意义教学反思

比例的意义教学反思

身为一名到岗不久的人民教师,教学是我们的任务之一,对学到的教学新方法,我们可以记录在教学反思中,那么问题来了,教学反思应该怎么写?下面是小编为大家收集的比例的意义教学反思,仅供参考,希望能够帮助到大家。

比例的意义教学反思1

教学过程:

一.复习旧知、铺垫引新

师:上一节课我们一起学习了正比例的意义,那么怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

生:两种相关联的量,一种量变化另一种量也随着变化,当这两种量中相对应量的比的比值一定,也就是商一定时,我们就称这两种量是成正比例的量。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,可以用式子y/x=k(一定)。

教者板书用字母表示的式子。

师:说得真好!×××你能再复述一遍吗?

生2复述。

师:那么同学们能判断下面两种量是否成正比例吗?为什么?

出示:

(1)时间一定,行驶的路程和速度

(2)除数一定,被除数和商

生1:时间一定,行驶的路程和速度成正比例。因为行驶的路程/速度=时间(一定)。

生2:除数一定,被除数和商成正比例。因为被除数/商=除数(一定).

师:在日常生活中我们经常遇到单价、数量和总价这三种量,你能说出单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

生1:这三种量有这样三种关系:单价×数量=总价、总价÷数量=单价、总价÷单价=数量。当单价一定时,总价和数量成正比例;当数量一定时,总价和单价成正比例。

师:说得真好!如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

二.交流讨论、探究新知

出示例3的表格。

师:这里有一组信息,同学们仔细看一看这里提供了哪些信息?指名一生回答。

生:这里告诉我们用60元钱去买本子时的几种可能发生的一些情况。

师:嗯!请同学们围绕这样几个问题展开讨论:(出示讨论提纲)

(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?

(2)你能找出它们变化的规律吗?

(3)猜一猜,这两种量成什么关系?

待学生讨论片刻之后师提问:谁来将刚才讨论的结果跟大家做个交流。

生:表中列举了单价和数量两种相关联的量,一个量扩大另一个量反而缩小,一个量缩小另一个量反而扩大,在变化的过程中相对应的量的乘积始终是60。我想这两种量之间就是成反比例的关系。

师:大家同意他的观点吗?

生齐:同意!

师:与正比例相比,大家觉得这样两种量有什么特征呢?

生:首先要是相关联的量,一个量变化另一个量也要跟着变化。成正比例的两个量在变化过程中比值不变,而这里的两种量在变化的过程中是积不变。

师:那我们就可以说,这两种量具有什么样的关系呢?

生:这两种量的关系就是反比例关系。

(教者根据学生的回答作相应的板书)

师:真会观察思考!

投影出示“试一试”

师:你能根据表中已有的信息将表填写完整吗?

生:每天运18吨,需要运4天;每天运12吨,需要运6天;每天运9吨,需要运8天。

师:为什么这样填?

生:每天运的吨数乘以时间要等于总吨数72吨。

师:根据表中数据,你能回答表格下面的问题吗?

生1:相对应的两个数的乘积是72。

生2:这个成绩表示的是工地要运水泥的总吨数,它们之间的关系可以用式子:每天运的吨数×天数=总吨数。

生3:每天运的吨数和需要的天数成反比例。因为每天运的吨数和需要的天数是相关联的两种量,其中一个量变化,另一个量也随着变化。在变化过程中,相对应的数量的乘积总是不变,都是72。所以,这道题中的两种量是成反比例的关系,每天运的吨数和需要的天数是成反比例的量。

师:仔细观察刚才研究的例3和“试一试”,它们有哪些共同的地方呢?

生1:它们提供的两种量都是相关联的量。一种量扩大,另一种量缩小;一种量缩小,另一种量扩大。

生2:这两道题里面的两种量的乘积都不变的。第一道题中两种量的乘积都是60,第二道题中的两种量的乘积都是72.

师:反比例的关系也可以像正比例一样用字母式子把它们的关系表示出来吗?

生:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,反比例关系可以用:x×y =k(一定)来表示。

三、巩固应用 、拓展延升

1.师:请大家把书翻到第65页,“练一练”中每袋糖果的粒数和装的袋数成反比例吗?为什么?

生:这道题中的每袋糖果的粒数和装的袋数成反比例。因为:每袋糖果的粒数和装的袋数是相关联的两重量,而且每袋糖果的粒数和装的袋数的乘积都是300。

师:你认为要判断两种量是否成反比例,要从哪几个方面来考虑。

生:一要看这两种量是否相关联,二要看相关联的两种量的乘积是否始终不变。

2.师:请大家把书翻到第68页,看书上的第六题。请大家写出几组对应的每本页数和装订本数的乘积,再比较乘积的大小。(稍等片刻)

师:谁来汇报一下你写的几组乘积,它们有什么关系?

生:我算了这样几组:10×90=900;12×75=900;15×60=900;20×45=900;25×36=900。它们的成绩相等,都等于900。

师:这个乘积表示的是什么呢?

生1:这个乘积表示的是纸的总页数。

生2:这个乘积表示的就是用来装订练习本的纸的总页数。

师:每本练习本的页数和装订的本数成反比例吗?为什么?

生:成反比例。因为每本练习本的页数和装订的本数是相关联的两种量,一种量变化的时候,另一种量也随着变化,在变化的过程中,每本练习本的页数和装订的本数的乘积保持不变。所以,每本练习本的页数和装订的本数成反比例关系。

3.师:观察第7题中的两种量,每天装配的数量和需要的时间成反比例吗?

生:每天装配的数量和需要的时间成反比例。

师:你是怎样判断的?

生:每天装配的数量和需要的时间是两种相关联的量,并且这两种相关联的量中相对应的量的积始终不变都是1600。所以每天装配的数量和需要的时间成反比例。

4.师:下面我们一起看第8题,首先请大家根据方格图中的长方形将表格填写完整,并思考表格下面两个问题。

稍等片刻后,师:通过 ……此处隐藏7810个字……情境中主动学习。数学活动是让学生经历一个数学化的过程,也就是让学生从自己的数学经验出发,经过自己的思考,概括或发现有关数学结论的过程。例如教学《比例的意义和性质》时,我在新授前将设计这样一段情境:同学们,你们知道吗?在我们的身上也有很多有趣的比,如人的胸围的长度与身高之比是1:2,将拳头滚动一周的长度和脚的长度的比是1:1,人脚的长度与身高的比是1:7。当人们了解了这些,又掌握了这种神奇的本领后,去买袜子只需要把它绕圈一周就知道何适不合适了,而侦察员就能根据罪犯脚印的长度推测出身高。你想拥有这种本领吗?这种神奇的本领就是我们这节课所研究的内容,比例的意义和性质。

在活动中相互交流,相互启发,相互鼓励,共同体验成功的快乐。例如在讨论圆的周长是不是直径时,有的学生运用直观的看、比或量的方法来判断半圆弧比直径长,而有的学生却运用两点之间的曲线比线段长来推理,这是两种不同水平的思维。最后教师可以将学生的思维从具体思维水平又引向抽象逻辑思维水平,促进学生思维的发展。象这样给学生提供充分从事数学活动的机会,学生在观察中思考,在思考中猜测,在操作中验证,在交流中发现,在阅读中理解,使课堂形成多方的互动,多向交流,充分发挥学生的主体作用,从而不仅仅是获得知识,更重要的是态度、思想、方法,是一种探究的品质,这对他们后续知识的学习将有较大的影响,为学生的终身学习奠定基础。

比例的意义教学反思13

比例这部分知识是在学习了比的知识和除法与分数关系的基础上教学的,属于概念教学,为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触对应函数的思想,而且可以用来解决日常生活中一些具体的问题。本节课,为了更好地突出重点,突破难点,按照学生的认知规律,遵循自主性原则,主要让学生在情境中通过观察、计算、比较等的学习过程中掌握知识。为充分调动学生的学习积极性,促进学生有效学习。本节课力求做到以下几点:

一、创造有效情境,激发学习热情。

数学课堂教学需要必要的生活情境,这节课为学生提供四个实际情境图,创设这个情境有五方面的考虑:一是歌曲情境引入;二生活情境和已有知识经验、基础引入比例意义的教学;三是依据四面国旗长与宽可以组成多个比例式。四是有助于在教学中渗透爱国主义教育,注重了“数学化”和“生活化”,为学生展现出了“活生生”的思维活动过程,充分发扬自主。

二、重组教材,活用教材。

教材是提供给学生学习内容的一个文本,我根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。这节课中在四面国旗的尺寸中找比组成比例,学生比较容易找到国旗长与宽的比,两两可以组成比例。同样国旗宽与长的比,两两也可以组成比例。另外每两面国旗的长之比与它们的宽之比也可以组成比例,课题中通过“你还能找出其它的比例吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。

比例的意义教学反思14

“正比例的意义”教学,是在学生掌握了比例的意义和基本性质的基础上进行教学的,着重使学生理解正比例的意义。正、反比例知识,内容抽象,学生难以接受。学好正比例知识是学习反比例知识的基础。因此,使学生正确的理解正比例的意义是本节课的重点。在实际教学中,我注意了以下几点:

1、联系生活,从生活中引入:

数学来源于生活,又服务于生活。关注学生已有的生活经验和兴趣,通过现实生活中的素材引入新课,使抽象的数学知识具有丰富的现实背景,为学生的数学学习提供了生动活泼、主动的材料与环境。这样,将学生带入轻松愉快的学习环境,创设了良好的教学情境,学生及时进入状态,手脑并用,课堂气氛十分活跃,将枯燥的知识形象,具体,学生易于接受。

2、在观察中思考

小学生学习数学是一个思考的过程,“思考”是学生学习数学认知过程的本质特点,是数学的本质特征,可以说,没有思考就没有真正的数学学习。本课教学中,我注意把思考贯穿教学的全过程,让学生自己再设计一种情景,并引导学生进行观察,从而得出:两个相关联的量,初步渗透正比例的概念。这样的教学,让全体学生在观察中思考、在思考中探索、在探索中获得新知,大大地提高了学习的效率。

3、在合作中感悟

新的数学课程标准提倡:引导学生以自主探索与合作交流的方式理解数学,解决问题。在本课的设计中,我本着“以学生为主体”的思想,在引导学生初步认识了两个相关联的量后,敢于放手让学生采取小组合作的方式自学例1,在小组里进行合作探究,做到:学生自己能学的自己学,自己能做的自己做,培养合作互动的精神,从而归纳出正比例的意义。

4、在练习中巩固提升

为了及时巩固新知识,完成了练一练习题后,又设计了两道加深题,让学生巩固本节课知识。通过练习,要求逐步提高,学生的思维也得到了提高;最后引导学生自己对知识进行梳理,培养学生的归纳能力,使学生进一步掌握了正比例的意义。

比例的意义教学反思15

正比例的意义是一个非常抽象的数学概念性知识。因此,我从学生熟悉的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课,使抽象的数学具有丰富的现实基础。本节课的教学,主要体现以下几个特点:

一、把“分层”理念贯穿于整节课堂

学生是一个个鲜活的个体,知识基础和生活经验各不相同,所以教学中我尽最大努力照顾到所有的学生,使他们每一个人都得到应有的知识和不同程度的提高。新课开始,我设计了生活中的一种情景,利用表一引导学生进行观察,并出示学习提示,让学生从不同角度说出自己所观察到的,初步渗透正比例的意义。在引导学生初步感知了两种相关联的量后,放手让学生采取小组合作的方式自学表二,并让学生在小组中讨论例题的共同点,从而归纳出正比例的意义。

在整个教学过程中,我灵活运用《分层测试卡》这一教学资源,把其中的题目按照难易程度和层次的不同选择性的适时融入教学,为学生理解正比例的意义而服务。

二、关注学生的学习过程

数学学习是一个思考的过程,没有思考就没有真正的数学学习。新的数学课程标准倡导:引导学生以自主探索与合作交流的方式理解数学,解决问题。所以我在教学中利用表格,创设学生熟悉的系列生活情境,与正比例的意义进行联系。让学生独立填表,目的是让学生经历这样的一个过程,让学生在填表的过程当中,强化学生对于概念表象的建立。通过学生独立填表让学生几次感知“变”与“不变”,在感知“变”与“不变”过程中体会“相关联”,以此来理解正比例的意义。让学生通过观察分析、归纳概括、拓展提升等系列的学习活动,这样安排教学使学生经历了正比例意义的建构过程,并且采取数形的教学手段把具体的数据用图像的形式体现出来,使学生真正意义上理解了正比例的意义,经历用具体数据解释图像,用图像描述具体数据的过程,做到“数”与“形”的有机结合,以帮助学生构建立体的概念模型,并为今后函数知识的学习奠定了有力的知识基础。整个教学过程使学生在观察中思考,在思考中探索,在探索中交流,在交流中获得了新知。

《比例的意义教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式